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COMPUTATIONAL MATERIALS
SCIENCE: THE ERA OF
APPLIED QUANTUM
MECHANICS

For many centuries, mate-
rials were discovered,
mined, and processed in a
largely serendipitous way.
However, the characteriza-
tion of the atom and the pro-
gress made in x-ray diffrac-
tion during the early years of
this century started a quest
for a theory of materials in
terms of their atomic constituents. Later decades saw
scientists developing many qualitative and semi-quantita-
tive models that explained the principles of atomic cohe-
sion and the basic properties of semiconductors, metals,
and salts. Considering their simplicity, some of the models
were surprisingly accurate and led to remarkable progress.
However, for most materials of current interest, the in-
teratomic interactions are intricate enough to require
fairly elaborate models. Fortunately, we are entering an
era in which high-performance computing is coming into
its own, allowing true predictive simulations of complex
materials to be made from information on their individual
atoms.

Methods for computing the properties of materials
can be divided into two classes: those that do not use any
empirically or experimentally derived quantities, and
those that do. The former are often called ab initio, or
first-principles methods; while the latter are called em-
pirical or semi-empirical. The ab initio methods are par-
ticularly useful in predicting the properties of new mate-
rials or new complex material structures, and for predict-
ing trends across a wide range of materials. The
semi-empirical methods excel at interpolating and ex-
trapolating from known properties. This article focuses on
the ab initio methods, which retain their predictive power
even when experimental data are scarce or unavailable.

Methodology of ab initio calculations

As is well known, the binding in molecules and solids is
due to the Coulomb forces between electrons and nuclei.
The exact solution of the full, many-body Schrédinger
equation describing a material is, of course, impossible,
but one can make surprisingly accurate approximations
of a system’s ground state, and such approximations are
widely used in condensed-matter physics. These approxi-
mations are based on density functional theory (DFT),!
which was developed at the University of California, San
Diego, by Walter Kohn, Pierre Hohenberg, and Lu Sham
(and for which Kohn shared the 1998 Nobel Prize in
chemistry with John Pople, a pioneer in quantum chem-
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The properties of new and artificially
structured materials can be predicted and
explained entirely by computations, using

atomic numbers as the only input.

Jerzy Bernholc

istry.) The impact of DFT on
physics, however, was cer-
tainly not smaller than its
impact on chemistry. DFT
proves that the ground-state
energy of an M-electron sys-
tem is a function only of the
electron density p(r). In DFT,
the electrons are represented
by one-body wavefunctions
¥;, which satisfy the Schrédinger-like equations (in
Rydbergs):

2p(r")dr
-V2+ Vp(n) + jl!‘—4ﬂ + Raelp(0)] [i(x) = £3p(x),

1=1,..., M.

The first term represents the kinetic energy; the second
is the potential due to all nuclei; the third is the classical -
electron—electron repulsion potential; and the fourth, the
so-called exchange and correlation potential, accounts for
the Pauli exclusion principle and spin effects. The exact
form of the exchange—correlation term is unknown, but a
local approximation, in which the exchange—correlation
potential of a homogeneous electron gas of density p(r) is
used at each point, has proved highly successful. DFT
generally predicts lattice constants, atomic positions, elas-
tic properties and phonon frequencies with errors smaller
than a few percent. For example, my research group at
North Carolina State University computed the radial dis-
tribution function of the then new solid Cg, (see figure 1)
six months before the first neutron scattering data, yet
the result of the computation agreed almost perfectly with
experiment.? In fact, the theoretical results were used for
the initial calibration of the experimental setup.

Density functional theory predictions of cohesive en-
ergies used to be less accurate, but including terms de-
pendent on the gradient of the electron density has sub-
stantially improved the agreement with experiment and
with high-level quantum chemistry calculations.?

Large-scale computations

Because the electronic structure calculations described
above are computationally demanding, progress in the
field depends in perhaps equal measure on advances in
theoretical methods and on advances in computer tech-
nology. For simple materials, such as silicon with only two
atoms in a periodically repeated unit cell, the computa-
tional effort required has become so modest now that the
calculations can be carried out on any contemporary per-
sonal computer. However, understanding the growth and
properties of silicon devices requires calculating the char-
acteristics of silicon surfaces. Because silicon is a cova-
lently bonded material, the creation of a surface leads to
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broken bonds. This process is energetically unfavorable,
so some atoms will move to rebond, forming a recon-
structed surface with less symmetry. (See the article by
John J. Boland and John H. Weaver, PHYSICS TODAY,
August 1998, page 34.) Depending on the complexity of
the resulting structure, the number of atoms N that one
must consider in the unit cell will range from 16 to 400.
Because the size of the computational effort grows roughly
as N2, and asymptotically even as N3, it is no wonder that
progress in computational materials physics is closely tied
to progress in methodology and computers.

The largest ab initio calculations usually make use
of functions called “pseudopotentials,” which replace the
nuclear potential and the chemically inert core electrons with
an effective potential, so that only valence electrons are
explicitly included in the calculations. (See the article by
Marvin L. Cohen, PHYSICS TODAY, July 1979, page 40; also
see ref. 4.) The pseudopotentials are derived from atomic
calculations that use atomic numbers as the only input.
Because pseudo wavefunctions are smooth and nodeless,
plane waves can be used as a basis set. This offers three
major advantages:

D> Plane waves do not depend on the atomic positions, so
using them makes the results more precise.

D> The accuracy of the result is determined by a single
parameter, the highest kinetic energy of the waves in-
cluded in the calculations.

> The kinetic energy (- V?) is diagonal in Fourier space,
whereas the potential is diagonal in real space.

The transformation between the two spaces occurs via

FIGURE 1. CALCULATED
electron distribution in Cg at
1000 K, obtained from
quantum molecular dynamics
simulations.? Yellow, green,
and blue denote regions of
successively greater electron
density. The atomic structure
of Cy, (background) consists
of five- and six-membered
rings arranged in the shape of
a soccer ball.

the well-known fast
Fourier transform (FFT)
algorithm, which works
very quickly on vector su-
percomputers and modern
workstations. However, be-
cause the FFT is a global
operation, its performance
slows down on massively
parallel computers. For a
large problem, the number
of plane waves can be 50
000 or more, and one must
use iterative diagonaliza-
tion methods that mostly
work with the occupied
subspace. A particularly ef-
fective approach was first
developed by Roberto Car
and Michele Parrinello
(then at the International
School for Advanced Stud-
ies in Trieste), who com-
bined the solution of the
electronic structure prob-
lem with molecular dy-
namics for the atoms.> Another approach is to solve itera-
tively for the electronic wavefunctions, compute the forces,
and move the atoms by a large step.® In both cases the
atoms follow Newton’s equations of motion with ab initio
interatomic forces. These methods are called ab initio, or
quantum molecular, dynamics.

Ab initio calculations have long been useful in ex-
plaining experimental results and providing unique in-
sights. The recent advances make it possible to predict
the properties of materials with complex atomic arrange-
ments, whose study would have been prohibitively expen-
sive just a few years ago. The examples below illustrate
the role that accurate and quantitatively reliable calcula-
tions can play in modern condensed matter physics and
materials science, while also highlighting the advantages
of collaboration and close interaction between theorists
and experimenters.

Solid C3¢

Some of the most exciting new materials discovered in the
last decade are the fullerenes. Solid Cgy, once it was
produced in quantity, was shown to have a number of
remarkable properties, including superconductivity after
intercalation with alkali metal atoms. In fact, its transition
temperatures T, are approaching 40 K, second only to
high-T, oxides. The relatively high T, of Cg, is due to the
strong electron—phonon interaction in curved fullerenes.
This has stimulated Marvin Cohen, Steven Louie, and
their coworkers at the University of California, Berkeley,
to examine fullerenes with even greater curvatures.” In-
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FIGURE 2. ATOMIC STRUCTURE and surface of constant charge den-
sity of rhombohedral Cyq. Blue spheres represent carbon atoms. The
covalent-like bonding between the Cs, units is clearly visible. It is
predicted that this new solid will form from individual molecules
and will exhibit high-temperature superconductivity. (From ref. 7.)

at a grain boundary the coordination constraint
becomes weaker. There is more room for relaxation,
and arsenic atoms can assume their preferred three-
fold coordination. Wouldn’t that behavior break
bonds and make some silicon atoms very unhappy?
Not if arsenic atoms act in pairs, effectively break-
ing one bond and moving away from each other.
Indeed, calculations by a joint theoretical-experi-
mental team headed by Sokrates Pantelides of Van-
derbilt University and Stephen Pennycook of Oak
Ridge National Laboratory found dimers and even
chains of dimers to be energetically favorable.® In
fact, dimer chains, shown in figure 3, were some-
what preferred.

The story does not end there. Two years later
the same team succeeded in imaging the arsenic
atoms at a grain boundary, albeit a more complex
boundary than the one examined theoretically. Ar-
senic atoms were indeed in the dimer configura-
tions, but the dimers were isolated. Follow-up cal-
culations, although carried out for an idealized sys-
tem, provided the explanation in terms of kinetic
constraints, the atomic geometry at the more com-
plex boundary, and entropic effects at the fairly high
doping temperature.

Magnetism

In the early days of quantum mechanics, the Heis-
enberg and Ising models of magnetism provided
important conceptual models for the entire field of
phase transitions. However, magnetic phenomena
are complex, and there are still many unsolved

deed, they showed that a solid formed out of Cs4 should
have even more remarkable properties. Unlike the mole-
cules in the Cg solid, the individual Cs5 molecules
crosslink (see figure 2). The cohesive energy of solid Csg
should be comparable to that of solid Cq, and the density
of electronic states at the Fermi level should also be high,
as is necessary for high T, according to the Bardeen—Coo-
per—Schrieffer theory of superconductivity. And the elec-
tron—phonon coupling? The calculations show that it is
even stronger than in Cg, so that solid Cgg is an excellent
candidate for a superconducting solid with a high T.,.

How about an experimental confirmation? Growing a
“designer” solid is not easy. The Cgs molecules form in the
gas phase, but Alex Seattle’s group (also at Berkeley) was
able to deposit them on a substrate and measure some of
their properties. Indeed, the individual molecules turn out
to be more reactive than Cg, molecules and seem to form
dimers and trimers. But a solid sample of Cs4 good enough
for the delicate measurements of superconducting behav-
ior remains to be made.

Silicon

Let us now turn to the technologically important case of
silicon. Although most physicists think of devices as being
made of a single crystal, polycrystalline silicon is used
extensively in microelectronics. When polycrystalline sili-
con is doped, a significant number of dopant atoms seg-
regate to the grain boundaries and become electrically
inactive. What are the driving forces for that behavior,
and can it be prevented?

Consider the case of a substitutional donor, arsenic.
Experiments indicate that its segregation energy is sub-
stantial, about 0.5 eV. How is that possible? We know from
elementary chemistry that arsenic has the propensity to
be either trivalent or pentavalent. It is the perfection of
crystalline silicon that forces it to assume a four-fold
coordination and thus become a shallow donor. However,
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problems—especially at the microscopic level—be-
cause spin effects are so subtle. Harnessing magnetic
phenomena to the fullest extent possible is also important
for many applications, most notably in high-density com-
puter storage.

In DFT it has long been possible to carry out spin-
polarized calculations, treating the spin-up and spin-down
electrons separately. For largely homogeneous systems,
where there is a single preferred spin direction, that
treatment has worked well and has led to a number of
surprises. It is now well accepted that magnetism is an
effect of undercoordination, in which some atoms have
fewer neighbors than the maximum number of bonds they
can form. This is because in a covalent bond a spin-up
electron pairs up with a spin-down electron, leading to no
net spin. Nevertheless, it took years to arrive at a satis-
factory description of low-coordinated systems. Pioneering
calculations by Arthur Freeman and his coworkers at
Northwestern University have shown that surface layers
can possess magnetic moments enhanced far beyond those
in the bulk, and that thin films of nonmagnetic metals
can become magnetic.

In disordered or low-symmetry systems, even more
complicated spin arrangements are possible, in which the
various spins are not aligned along a single preferred
direction. How do we know which arrangement is ener-
getically favored? The usual procedure is to compute the
energies of each competing structure to identify the ground
state. This can be tedious. But there is a better way. Ulf
von Barth and Lars Hedin at the University of Lund
devised a generalized spin-density theory in which the
wavefunctions are two-component spinors WY(r)=
[1(r),9(r)], where ¥; and ¥, are complex functions. This
approach allows the spin quantization axis to vary con-
tinuously with position, but the total energy needs to be
minimized without any constraints on the spin direction.
Very recently, Car and his coworkers at the Institute for
Numerical Research in Lausanne, developed a generali-



zation of the Car—Parrinello procedure that simultane-
ously optimizes both the spin directions and the atomic
coordinates.® The first applications to small iron structures
found both collinear and noncollinear ground states, de-
pending on the cluster size. (See figure 4.) Very interest-
ingly, there are energy barriers separating the collinear
and noncollinear structures. Such barriers do not exist in
the classical Heisenberg model of a spin system.

This example also highlights the emergence of clusters
as a new and exciting class of materials. Atoms in clusters
are undercoordinated compared to those in bulk, resulting
in different structures, larger magnetic moments, and
enhanced reactivity patterns in catalysis. Clusters may
become the building blocks of a host of new materials, but
their structures and properties, which can vary dramati-
cally with cluster size, must first be well understood.

New methods

Although materials computations have already advanced
quite far, the quest for faster and bigger calculations
continues unabated. This has stimulated interest in “real
space” methods, which avoid the use of plane waves that
extend throughout the entire system by having the vast
majority of operations be local, in “real space.” Working

Multiscale phenomena occur in many areas of physics. In
each case we can use the same conceptual framework:
Consider an iterative solution of a differential equation on a
grid. Although the iterations quickly reduce error components
that are oscillatory on the scale of the grid, the long-wavelength
components converge only slowly. However, the approximate
solution can be transferred to a coarsened grid, where the error
is now oscillatory, and iterated there. After a convergence
slowdown is observed, a still coarser grid is used.

Up to this point, the coarsening procedure is very reminis-
cent of the renormalization-group approach, which focuses on
the large-scale features of the problem. However, in the multi-
grid method, developed by the mathematician Achi Brandt of
the Weizmann Institute, one recursively transfers the coarse-
grid solutions back to finer grids.”® This introduces high-fre-
quency errors, of course, but they are easily removed by a few
iterations. Thus we obtain a machine-precision solution in O(K)
operations, where K is the number of points on the fine grid.

Actual calculations require high accuracy and thus high-or-

FIGURE 3. GRAIN BOUNDARY. This two-dimensional plot
shows the electron density at a silicon grain boundary
saturated by a chain of arsenic atoms. The arsenic atoms are
shown in red, the silicon atoms in blue. The color scheme (in
order of decreasing electron density) is red, yellow, green, light
blue, and deep blue. (From ref. 8.)

in real space has several advantages. It allows one to use
advanced mathematical techniques that automatically
separate the various length scales present in the problem,
substantially accelerating convergence. (See the box be-
low.) Also, parallelization becomes much easier, because
each processor can be assigned a given region of space.
Finally, real-space methods may reduce scaling of the
computational effort with system size to the order of the
number of atoms N rather than the current O(N®).

The easiest way to exploit the multiscale aspects of
real-space calculations is by using methods based on
techniques of applied mathematics: multigrids, wavelets,
and finite elements. Of those three, the grid-based meth-
ods!? have progressed the most in applications, and I will
give a few examples here.

For clusters, grid-based methods offer a natural ad-
vantage by making it easy to implement boundary condi-
tions. James Chelikowsky and his group at the University
of Minnesota have beautifully exploited that advantage in
determining structural properties, polarizabilities, optical
energy gaps, and excitation spectra.!! It is much easier to
calculate optical gaps in clusters than in the bulk, because
in clusters even corrections to density functional theory
can be determined by computing the DFT total energy
differences. Excitation spectra are significantly more dif-
ficult to work with, but again the real-space methodology
and the small size of the clusters allow simplification.
Using expressions derived from time-dependent local den-
sity theory, Chelikowsky and his colleagues obtained ex-
cellent results for the spectra and polarizabilities of so-
dium and silicon clusters. The agreement with experiment
was almost as good as in high-quality quantum chemistry
calculations, which are much more expensive to do.

There have also been a substantial number of large-
scale solid-state applications of real-space methods. In my
own group, the multigrid approach is now the method of
choice for studies of large systems. We have used it to
determine large surface reconstructions and their optical
spectra, and to investigate doping, surface melting, and

Multiscale Calculations on a Grid
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® L ® o @ II. Medium ..
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[ —&- ® III. Coarse

der discretizations, because the cohesive energy is a very small
fraction of the ground-state energy. Consider, as an example,
the one-dimensional Poisson equation, ®"(x) = f(x). By Taylor-
expanding ®(x), we obtain an approximate discretization based
on central finite differences:

[D(x; - b) - 2®(x;) + D(x; + HVP = flx) + O(H?).
However, expanding both ®(x) and f(x), and using the fact that

®"(x) is equal to f(x) at convergence, leads to a more accurate
expression that still involves only the nearest neighbors:

[12D(x; - b) - 24D(x) + 12D(x; + H)/FH?
= flx; - b) + 10f(x) + flx; + b) + O(*).

The short range of this “Mehrstellen” discretization is particu-
larly important for parallelization and O(N) methods.
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nanotubes. Quantum molecular dynamics, which must
conserve total energy to a high degree of accuracy, works
very well and allows for large time steps. The advantage
of multigrids becomes particularly apparent in systems
where convergence is difficult to attain because of such
obstacles as charge sloshing or multiple length scales. The
use of parallelization has also been very effective in our
work, and the computational speed on the massively
parallel Cray T3E computer has scaled linearly with the
number of processors—up to 1024, the maximum number
to which we had access.

As an example of a specific application, consider
nanotubes, which are the strongest materials known.
Early classical molecular dynamics simulations indicated
that they had exceptional strength, a suggestion that
needed to be confirmed. However, because currently made
nanotubes are so very short, it is extremely difficult to
measure their strengths. With no experimental data avail-
able at the time, ab initio simulations to determine the
mechanisms of breakage seemed to be the next best
approach. But how were they to be performed, if even the
classical simulations had proved computationally expen-
sive? Well, there was a trick—namely, to simulate a tube
at a high fixed dilation and high temperature. Indeed, a
long quantum molecular dynamics computer run identified
the key transformation that leads to either breakage or
plastic behavior, depending on the temperature and strain
rate.!? The predicted strength is the highest by far of any
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FIGURE 4. ATOMIC AND MAGNETIC STRUCTURES of Fe; and

Fe; clusters. In the isomers a and ¢ the spins are noncollinear.
The corresponding collinear structures are b and d. Magnetic

moments are often much larger in clusters than in bulk, a fact
that could be important for applications. (From ref. 9.)

material to date, and there will be no shortage of exciting
applications when nanotubes can be grown in sufficient
quantity and quality.

Overcoming size limits

We now turn to methods that seek to overcome the limits
on the size of the systems that can be studied ab initio.
There is an urgent, growing need to include more and
more atoms in simulations—new space-age materials are
becoming more complex or consist of multiple layers of
“simple” materials that have to be modeled together.

Computer designers are doing their part, but the
standard density functional methods described above pre-
sent a problem. Consider a system of N atoms. As N grows,
the number of electrons it contains grows as O(N). In a
solid, the wavefunction of each electron can extend over
the whole solid, which means that computing one wave-
function will take at least O(NN) operations. Hence, the
computations must scale at least as O(N?). Furthermore,
the individual wavefunctions must be orthogonal to each
other, and the process of orthogonalization or diagonali-
zation scales as O(N3).

Recently, a number of ingenious methods have been
proposed for evaluating the ground-state energy in O(N)
operations. How is that possible? The main idea in most
of the approaches is to use a basis of localized, variation-
ally optimized functions. Each function is confined to a
given region of space, but the various confinement regions
overlap so that there is little loss of generality. Because
the matrix elements between functions localized in regions
sufficiently far away will vanish, the number of non-zero
elements becomes O(N). Nevertheless, the results are still
quite accurate with only a few functions per atom and
with localization regions spanning only a few bond lengths.
Recent reviews have compared the various aspects of the
proposed O(N) methods.!3

The' DFT-based O(N) methods are still being devel-
oped, but the localized functions are turning out to be
useful even apart from facilitating very-large-scale calcu-
lations.!* The optimization shown in figure 5, for example,
which was started from random numbers, led to a chemi-
cally very intuitive result: a function strongly localized on
a carbon—carbon bond. That example provides some in-
sight into and justification for expecting the eventual
success of O(N)-like methods.

Chemists have long known that good approximations
of the cohesive energies of complicated structures can often
be obtained by summing up the known “strengths” of the
individual bonds. Using the quantum-mechanical basis
functions that automatically localize in bonding regions
should lead to accurate results while keeping the number of
basis functions to a minimum. The strict localization also
makes it more efficient to do large-scale parallelization, and
it is likely that DFT calculations including more than a
thousand atoms will appear soon. Such calculations should
have a significant impact on our understanding of compli-
cated solids, large biomolecules, and complex liquids.

Beyond density functional theory

Density functional theory has known drawbacks. For ex-
ample, it does not do well in describing properties that
involve excited states, such as bandgaps of semiconductors
and insulators. That limitation is not surprising though,



because DFT is a variational approach for obtaining the
total energy of only the ground state. To obtain the energies
of the excited states, we need to use many-body theory
and properly take into account the nonlocal interaction
between electrons. The simplest working theory, the so-
called GW approximation, developed by Hedin and
adapted for use with semiconductors by Steven Louie and
Mark Hybertsen,'® leads to bandgaps in excellent agree-
ment with experiment.!® However, the computational ex-
pense is significantly greater than that of DFT calcula-
tions, and further simplifications would be desirable.

Although the DFT ground-state energies, and in par-
ticular the differences between the energies of alternative
ground-state structures, are quite accurate, the errors in
unfavorable cases are often still too large, because the
exchange—correlation potential is not known exactly. If
greater accuracy is required, a sophisticated many-body
treatment is again necessary. The most successful meth-
odology is based on the quantum Monte Carlo approach,
in which the full many-electron equations are solved by
statistical sampling.!” Although it is substantially more
expensive than density functional theory, the quantum
Monte Carlo approach is likely to be the method of choice
for high-accuracy benchmark calculations in small and
medium-sized systems.

Future outlook

Progress in materials simulation is accelerating while also
becoming more important. The rapid increase in the speed
of computers is likely to continue unabated for at least
the next decade, and possibly significantly longer. The
algorithmic progress, stimulated by the interest and ad-
vances in the field, is even more robust. As some of the
examples above illustrate, it is already possible to predict
many properties reliably, and in some cases the theoretical
input has stimulated important experimental discoveries.
As the capabilities for performing realistic simulations
increase, it might become possible to routinely “design”
on a computer, at least in part, a new material with
desirable properties. The candidate materials would be
examined theoretically and only the most promising ones
would be investigated experimentally.

Materials growth and processing is another field that
would benefit significantly from reliable simulations. Al-
though the industrially relevant processes are often rather

FIGURE 5. OPTIMIZED ELECTRON-DENSITY FUNCTION for a
carbon nanotube, calculated by Jean-Luc Fattebert and his
coworkers at North Carolina State University. Note that
although the allowed localization region extends over 6 A
(shaded in blue), this function is largely confined to one
carbon-carbon bond. The plotting plane is along the surface of
the nanotube. The calculations used a non-orthogonal orbital
multigrid generalization of a method proposed by Giulia Galli
and Michele Parrinello. The optimized localized functions
have already enabled Fattebert and Marco Buongiorno
Nardelli to make efficient ab initio calculations of quantum
transport in nanotubes.

complicated, materials simulations are coming to be rec-
ognized as an important component of industrial R&D.
Atomistic-simulation software is being marketed to indus-
try, and major industrial firms such as Motorola and Dow
Chemical are building up their materials-theory depart-
ments. The US government, which has long been the
driving force in high-performance computing, has made
materials simulation one of its main areas of emphasis.
In view of the current interest in it and its rate of
progress, the field of materials simulation is likely to
experience rapid growth and a commensurate expansion
in job opportunities.
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